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requiring 
(nb) time. The recent algorithms of Ma-tousek and Agarwal are faster, but seem to be morespeci�c: they apply to arrangements of lines in theplane [32, 1]. The results in these papers are strongerthan those here, and they show how to �nd ranges allwith O(n=r) conicts, rather than O(n=r) on average.How general, and fast, can these results be made?Another natural question concerns problems forwhich �0(r) � A for r < n. The problems of con-vex hull computation for d > 3, visibility graph con-struction, and hidden surface elimination are all inthis category. Here our results do not readily im-ply output-sensitive algorithms. Is there some wayto make e�ective use of randomization for these prob-lems?As one more application of random sampling, theideas of this paper can readily be used to obtain analgorithm for point location in planar subdivisionsthat requires O(n logn) expected preprocessing, O(n)space, and O(logn) query time.The results of x3.2 can be extended to some \de-generate" cases where � is not functional, so that thework done in the convex hull algorithm is O(n logA0),where A0 is the number of extreme points in the out-put polytope. This extension will be reported else-where.Acknowledgements. We thank John Hersh-berger for �nding an error in an ancestor of Theo-rem 3.7. Thanks to Micha Sharir for helpful com-ments, and for observing the need for nondegener-acy in Theorem 3.7. Ketan Mulmuley observed thatLemma 4.3 is needed, and made other helpful com-ments. Conversations with Joe O'Rourke led to theincremental versions of our algorithms. It is a plea-sure to thank two trenchant referees, and also JohnHobby and Ellen Feinberg (n�ee Silverberg), for help-ful comments.References[1] P. K. Agarwal. An e�cient deterministic algo-rithm for partitioning arrangements of lines andits applications. In Proceedings of the Fifth Sym-posium on Computational Geometry, 1989.[2] A. Aggarwal. Personal communication.[3] N. Alon and E. Gy}ori. The number of smallsemispaces of a �nite set of points in the plane.J. Combin. Theory Ser. A, 41:154{157, 1986.[4] N. Alon, D. Haussler, and E. Welzl. Partition-ing and geometric embedding of range spaces of
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as simplices with vertices \at in�nity.") For any sim-plex T , let S(T ) be the set of hyperplanes of A thatare above any point of T . Recursively build a searchstructure for S(T ), for all such simplices T . To an-swer a query when D(h) is above the j�-level of R,search the data structure for the simplex containingthe vertical downward projection of D(h).A necessary observation here is that since R satis-�es the conditions of Lemma 4.15, each simplex T onthe j�-level of R has vertices that have no more than��n hyperplanes above them. Any hyperplane abovea point in T is also above some vertex of T , so jS(T )jis no more than d��n.That fact implies that our data structure has aquery time of O(A+logn), and a storage bound B(n)satisfyingB(n) � O(n) +O(ĝj�;d(r))B(d��n)� O(n) +O(rbd=2cjdd=2e� )B(O(log r)n=r);as r ! 1, using Theorem 3.1. The given boundO(nbd=2c+�) follows. The expected time required bythe algorithm to build the data structure satis�es thesame bound.Lemma 4.15 and the upper bound on ĝk;d(n) canbe applied in another way to obtain an algorithmfor halfspace range queries that requires less storageand preprocessing, at the cost of a longer query time.Consider the arrangement A0j� of hyperplanes de�nedby the j�-facets of R. These hyperplanes are the du-als of the vertices of the cells of A that are on thej�-level of A (or, symmetrically, on the (n�j�)-level).It will be convenient later to include in A0j� some ad-ditional hyperplanes: these hyperplanes are vertical,contain d� 1 points of S, and have j� points of S onone side. Such hyperplanes correspond dually to the\endpoints" at in�nity of unbounded edges of A onthe j�-level (or on the (n� j�)-level).The cells of A0j� induce a partition of S. For eachcell C, we recursively build a data structure for thepoints C \ S.In answering a query h�, as above we check if D(h)is below the j�-level of R. If so, the answer size ismore than n=(r�d2), so a naive algorithm should beused. If D(h) is above the j�-level of R, the answeris smaller and the data structure must be used. Thecells of the arrangement A0j� are examined. Some donot intersect the query hyperplane, and so contributeeither all or none of the points they contain to theanswer. The remaining cells, that do meet the queryhyperplane, must be examined recursively.From previous analysis [28, 4], there are two keyproperties of this algorithm that imply a bound onthe query time. The �rst is that the number of cells

cut by a given query hyperplane is O(�gj�;d(r)d�1 �), thecomplexity of the subdivision of the query hyperplaneby the hyperplanes of A0j� . (It is easy to show thatthe number of vertical hyperplanes in A0j� is no morethan gj�;d(r).)The second property is that the total number ofpoints in the cells examined for a query is no morethan d��n, when the dual point D(h) is above the j�-level of R. (Otherwise, no recursive call is made, andthe work is proportional to the answer size.) To showthis, consider the vertical projection x of D(h) ontothe j�-level of R. The hyperplanes above D(h) arealso above x, so h� � D(x)�. The projection x is con-tained in a (d�1)-simplex T on the j�-level. (We areusing the generalized sense of \simplex" mentionedabove.) Suppose T is bounded. Any halfspace con-taining x contains at least one vertex of T , so D(x)�is contained in U , the union of the halfspaces D(v)�for v a vertex of T . This implies h� � U . Sincethe duals of the vertices of T are j�-facets of R, Uis a union of cells of A0j� . Hence the total number ofpoints in the cells examined for the query is no morethan d��n.Suppose the simplex containing x is unbounded.Then x is in a (generalized) simplex on the j�-level ofR, and so is the convex closure of no more than d� 1vertices and unbounded edges. The edge endpoints atin�nity correspond dually to the vertical hyperplanesadded to A0j� , and the points are dual to j�-facethyperplanes. Let U be the union of the (negative)halfspaces bounded by these d hyperplanes. Thenh� � D(x)� � U , and again the total number ofpoints in the cells examined for the query is no morethan d��n.With these two facts, by [28, 4] the resulting querytime is O(A+ n�), where � = 1� 1=(1 + B), andB = O�log �rbd=2cjdd=2e�d�1 ��� log(d+ 1)�� ;so � = 1 �  + �, where  = 1=(1 + (d � 1)bd=2c),and � > 0 is independent of n and decreasing in r.The preprocessing time is expected O(n logn) andthe storage is O(n), as is easy to verify.5 Concluding RemarksOne natural question regarding these results: can de-terministic algorithms do the same things? For exam-ple, Theorem 3.7 guarantees the existence of subsetsthat are good for divide-and-conquer; can a deter-ministic algorithm �nd such subsets? The work of [6]says yes. However, these algorithms are expensive,Clarkson/Shor RS2 February 15, 1995 Page 18
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and O(n logn) time su�ces to �nd S n I�(S), usingan optimal algorithm for point location.Thus tn ex-pected time is enough to determine the diameter ofS, where tn � O(n logn) + X1�k<n tk=n:It is readily veri�ed that tn = O(n logn).4.4 Algorithms for halfspace rangequeriesIn this section, the new (�k)-set bound gives an im-proved storage bound for a deterministic algorithmfor halfspace range search in E3. Two new random-ized algorithms for range search in Ed are given andanalyzed. For convenience we will assume that theinput points are in general position, that is, no d+ 1are coplanar.Given n points S � Ed, the halfspace rangesearch problem is to build a data structure for S sothat given a query halfspace h�, the set of pointsh� \ S can be reported quickly. In [8], Chazelleand Preparata show that in the case d = 3, adata structure requiring O(n(logn)8(log logn)4) stor-age can be constructed that allows queries to be an-swered in O(A + logn) time, where A is the num-ber of points in the answer to the query. Theo-rem 1 of that paper implies that if ĝk;3(n) = O(nk�),then the storage required by their data structureis O(n(logn)2(��1)(log logn)��1). The bound givenhere implies that O(n(logn)2 log logn) storage is suf-�cient.The upper bound on ĝk;d(n) gives a bound ona randomized algorithm for halfspace range searchin Ed. This algorithm is conveniently described byputting the range query problem into a dual form,using the transform D described in [20, x3.1], towhich the reader is referred for background. Givenpoint p = (�1; : : : ; �d), D(p) is the hyperplane ofpoints x = (x1; : : : ; xd) satisfying xd = 2�1x1 +: : :2�d�1xd�1 � �d. Thus D maps points in Ed tonon-vertical hyperplanes in Ed. (Here \non-vertical"means that the hyperplane does not contain a verti-cal line. A vertical line is a translate of the xd-axis.)We will also have D map non-vertical hyperplanes topoints, so D(h) for hyperplane h is the point p suchthat D(p) = h. Under this duality, incidence and or-der are preserved, so that point p is on plane h if andonly if D(h) 2 D(p), and also p is in the halfspace h+if and only if D(h) 2 D(p)+. In this setting, a pointset S gives rise to an arrangement of hyperplanes Aby the duality transform. Given a query halfspace

h�, the answer to the query is the set of all hyper-planes D(p) in A such that D(h) is below them, thatis, D(h) 2 D(p)�.We will be interested in the set of all points that arebelow no more than k hyperplanes of A, for some k.These points correspond to the set of all query half-spaces h� whose answer set has no more than kpoints. The lower surface of this set of points is calleda k-level. It is not too hard to see that the number ofvertices of cells above a k-level is bounded by ĝk;d(S).This value asymptotically bounds the total complex-ity of the cells of A above the k-level.The main idea for the range search algorithmis the following generalization and restatement ofLemma 5.4 of [12].Lemma 4.15 Suppose S � Ed in general position,with jSj = n. Let R � S be a random subset of size r.Then there is an integer j� = O(log r= log log r) anda value �� = O(log r=r), such that with probabilityat least 1=2, the following holds: the j�-level of R isbelow the n=(r� d2)-level of S, and strictly above the��n-level of S.Proof. (Sketch) Consider any simplex T whose ver-tices are those of a given polytope in the j�-level of R.The simplex T has a j�=r proportion of the halfplanesof R above it. This is good evidence that the propor-tion of hyperplanes of S above T is more than 1=rand smaller than (log r)=r. This can be made preciseby appealing to Corollaries 4.3 and 4.4 of [12], in thesame way as done in the proof of Lemma 5.4 of thatpaper.Let us assume that r is constant (though \suf-�ciently large"). A given random subset can betested for satisfying the conditions of Lemma 4.15 inO(ĝj�;d(r)n) time, which is O(n) for �xed r. Thus, byrepeatedly sampling, a suitable sample can be foundin two trials, on the average.Suppose that for a query halfspace h�, the pointD(h) is below the j�-level of R, where R is now asuitable sample. (We will assume that the query half-space contains the �1 point of the xd-axis. Symmet-ric processing must be done for positive halfspaces.)Then D(h) is below the n=(r � d2)-level of A, andthe query has answer size A = 
(n). Here sophisti-cation doesn't pay, and linear search through S de-termines the answer in O(n) = O(A) time. On theother hand, suppose D(h) is above or on the j�-levelof R. Then recursively search a data structure for S,which is built as follows: triangulate the polyhedralcells of the j�-level of R. By the results of [12], thisyields O(ĝj�;d(r)) simplices, as r!1. (The triangu-lation here involves simple pieces that are simpliceswhen bounded; the unbounded pieces can be viewedClarkson/Shor RS2 February 15, 1995 Page 17
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v

p

p′Figure 1: A vertex v and a point p on new edge e.edges e01 and e02, and another new edge e12 which isthe intersection of F with the bounding sphere of B.Since e01 � e1 and e02 � e2, so it is only necessary toshow the containment for e12.The lemma is proven using the following fact: forpoints x, y on a unit sphere, if point z is no fartherthan 1 from x and y (in straight-line distance), thenz is no farther than 1 from all points on the (minor)great circle arc connecting x and y. This fact is easilyproven.Now suppose v is a vertex of a deleted edge andalso a vertex of a new edge, so v is within B. (SeeFigure 1.) For a point p on e, the great circle arc be-tween p and v is contained in F 0, using the geometricfact. If this arc is continued past p, it will reach apoint p0 on a deleted edge. Again using the geomet-ric fact, any ball that contains v and p0 will containp. Thus if p is outside any ball, then either v or p0 is,and that ball's complement is on the conict list forthe edge containing v or the edge containing p0.This lemma implies that the update condition forrandomized incremental construction of spherical in-tersections is satis�ed. To make the appropriate �relation functional, we require nondegeneracy, whichmeans here that no four input points are on the samesphere of radius �.Theorem 4.13 Given a nondegenerate set S of npoints in E3, their spherical intersection I�(S) canbe computed in O(n logn) expected time.Proof. With the above lemma, the update condi-tion holds; the objects are in a set S, the set of com-plements of closed balls of radius � about the pointsS; the � relation has F�X for X 2 S(4) when F is anedge in I�(X 0), where X 0 is the set of points corre-sponding to the regions in X. Nondegeneracy impliesthat � is functional. As noted above, the results of[29] imply that �0(r) = O(r).

Next we give a reduction from the diameter prob-lem to the spherical intersection problem. The idea isthis: let Dp denote the farthest distance from point pto a site in S. Let � = Dp for some p 2 S. Any pointq 2 S that is in the interior of I�(S) is closer than Dpto all points in S. The point q has Dq < Dp � DS ,and so q is not in any diametral pair. On the otherhand, if q 2 S is outside I�(S), then DS � Dq > Dp.Thus, if there are no points of S outside I�(S), thenDS = Dp, and if there are any such points, only thosepoints can possibly be in diametral pairs.Based on these observations, we have an algorithm.Perform the following loop: choose p 2 S at random.Compute Dp and the intersection I�(S) for � = Dp.Find the points of S outside I�(S); if there are none,we have the diametral pairs using I�(S). If there arepoints outside I�(S), assign S  S n I�(S).To �nd the set S n I�(S), we use an algorithm forpoint location in a planar subdivision (see [37, 20]).To do this, de�ne a \stereographic projection" forI�(S) as follows: pick a point p on the boundary ofI�(S), and a sphere Z determining the face of I�(S)containing p. Let h denote the tangent plane to Z atp. Let p0 be the point antipodal to p on Z, and h0 thetangent plane to Z at p0. De�ne a function F (x) fromE3 to h0, by mapping a point x to the intersectionpoint with h0 of the ray from p passing through x. (Ifx is on the other side of h from Z or on h then F (x) isunde�ned, and x =2 I�(S); this is checked for all s 2 Sin constant time per point.) The set of points thatare the image under F of the edges of I�(S) naturallyinduce a subdivision of H. Now in O(n logn) time,build a data structure for determining the location ofa point on that subdivision. For each point s 2 S,determine in O(logn) time the location of F (s) (ifF (s) is de�ned). The region of the subdivision thatcontains F (s) corresponds to a face of I�(S), ands 2 I�(S) if and only if the line segment ps doesnot pass through the boundary of that face. We canalso determine if s is on a face of I�(S). If so, and� = DS , then s forms a diametral pair with the sitecorresponding to the face.We have an optimal time bound for the algorithm:Theorem 4.14 Given a set S � E3 of n nondegen-erate points, the diametral pairs of S can be deter-mined in O(n logn) expected time.Proof. Suppose the points of S could be listed innonincreasing order of their Dp values. Then whenp 2 S is chosen at random, with probability 1=n itsrank in that list is k, for 1 � k � n, so that at mostk � 1 points of S need be considered in any furthercomputation of the diameter. From Theorem 4.3,I�(S) can be computed in O(n logn) expected time,Clarkson/Shor RS2 February 15, 1995 Page 16
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this way. Then the current value of A� is retained foranother iteration. Otherwise, assign A�  (A�A0)2.Theorem 4.11 Given a set S of n halfspaces in E3,where P(S) has A vertices, the intersection P(S) canbe computed in O(n logA) time.Proof. The time needed for the general step of thealgorithm is dominated by the time to compute P(R)and the sets F ^ S for F 2 ��(R). As noted above,this is expected O(n)(log r + logA0), where r = A�and A0 is a lower bound on A. Let A�i denote the ithvalue assigned to A�. During a period that A� = A�i ,the number of halfspaces is cut in half at each step ex-cept the last one, so the expected time to perform thesteps during that period is within a constant factorof (n+ n=2 + n=4 + : : :) logA�iA0 = 2n logA�iA0;where A0 here denotes the largest value assumed bythat variable during the period. Since logA�i+1 �2 logA�iA0, the total work done before A� = A�i is ex-pected O(n logA�i ). Let i0 = maxfi j A�i � A2g.Then the expected work for A�i with i � i0 isO(n logA).We must still bound the work for A�i with i > i0.By Lemma 4.10, the expected proportion of half-spaces eliminated is 1 � O(A=A�i ); by Markov's in-equality, the probability that the number of half-spaces is not cut in half is bounded above by aquantity proportional to A=A�i . That is, the prob-ability that we will perform the general step withA� = A�i , and then immediately reassign A� as A�i+1,is no more than O(A=A�i ). The work done beforeA� is not reassigned is therefore bounded above byPi�i0(A=A�i )O(n logA�i+1): This rapidly-convergingsum is dominated by its leading term, and sinceA�i > A2 for i > i0, we have O(n) expected workbefore the number of halfspaces is cut in half. Thetotal work for i > i0 is O(n+n=2+n=4+ : : :) = O(n),which completes the proof.4.3 Spherical intersections and diam-eterIn this section, we give an algorithm to compute theintersection of a set of �xed-radius balls in E3, andapply this algorithm to the problem of computing thediameter of a point set in E3.Such an intersection will be called a spherical in-tersection. In general, given S � Ed, the �-sphericalintersection of S, or I�(S), is the intersection of theclosed balls of radius � that have centers at the sitesof S. Spherical intersections have many properties in

common with convex polytopes, which are the inter-sections of sets of closed halfspaces. Like polytopes,spherical intersections are convex, and have vertices,edges, and faces, that in E3 naturally de�ne a planargraph. That graph has O(n) descriptive complexity[29]. Like polytopes, spherical intersections have du-als, which were introduced as �-hulls in [21].Unfortunately, spherical intersections do not sharewith convex polytopes some properties helpful for al-gorithms. In particular, the divide-and-conquer tech-nique of Preparata and Hong[36] does not seem tolead to a fast algorithm for computing spherical inter-sections. Our simple algorithm for spherical intersec-tions, requiring O(n logn) expected time, is asymp-totically faster than any previous algorithm.The spherical intersection problem arises in a clas-sic problem of computational geometry, the diameterproblem. Let S � Ed contain n sites (points). Thediameter DS is the largest distance between a pairof sites. A diametral pair of S is a pair of sites thatrealize the diameter. The problem of determining thediameter (and all diametral pairs) of a point set in theplane has long been known to require �(n logn) time[37]. In E3, the number of diametral pairs of n sitesis known to be O(n), as an easy consequence of thefact that the DS -spherical intersection has O(n) de-scriptive complexity. This suggests that the diameterproblem in E3 should not be too much harder thanfor E2. However, obtaining an algorithm for E3 withcomplexity close to O(n logn) \has been a source offrustration to a great many workers"[37] in computa-tional geometry. Our algorithm requiring O(n logn)expected time improves the on the best algorithmspreviously known, that have worst-case time boundsno better than O(npn logn) [2].Our algorithm for spherical intersection is very sim-ilar to the incremental algorithm in x4.2, except thatinstead of adding halfspaces one by one, we add closedballs of radius �. The objects of x2 are the comple-ments of these balls, since we want the edges de�nedby the balls that are contained in all the balls. Thegeometric fact necessary to the correctness of this al-gorithm is given in the following lemma.Lemma 4.12 In the spherical intersection algo-rithm, the balls in the conict lists of the three newedges bounding a face are contained in the conictlists of the deleted edges bounding that face.The proof is expressed in terms of unit balls, butobviously holds for balls of any given radius.Proof. Suppose the edges involved are on an oldface F and a new face F 0, with B the newly addedball, so that F 0 = F \B. Then two edges e1 and e2that are cut by the sphere bounding B give two newClarkson/Shor RS2 February 15, 1995 Page 15
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with H0, and we can reset C(H 0). In the latter case,we are led to an edge of P(R0) that is not in P(R),and that may conict with H 0. If the new edge con-icts, we are done. Otherwise, we continue searchingthe edges that conict with H 0. If we never �nd anedge of P(R0) that conicts with H 0, we may ignoreH0 in later processing. Otherwise, we have updatedC(H0), and have done no more work than the originalalgorithm.4.2.1 An output-sensitive algorithmThis section gives an output-sensitive algorithm forcomputing P(S). We assume that a point p� in theintersection is known; such a point can be found inlinear time using linear programming[33, 13].The main idea of the algorithm is to quickly �lterout those halfspaces in S that contain P(S) in theirinteriors. Such halfspaces are redundant, and remov-ing them gives a set of irredundant halfspaces S0 withP(S) = P(S0). Furthermore, if the descriptive com-plexity of P(S) is A, then there are certainly no morethan A halfspaces in S0. (Dually, we are quickly re-moving points that are inside the hull.)The algorithm is based on an expected relation be-tween the intersection P(R) of random R � S, andthe intersection P(S). Suppose P(R) is split up intosimple pieces as follows: take some arbitrary (�xed)plane h, and cut each face of P(R) into trapezoids us-ing the translates of h that pass through the verticesof the face. Decompose P(R) into a set of simpleregions �(R), each region consisting of the convexclosure of p� with a trapezoid from the cutting of thefaces. For F 2 �(R), the set F ^ S corresponds tothe set of halfspaces of S that do not contain F en-tirely in their interiors, and jF j denotes jF ^ Sj. Thefollowing lemma is a corollary of Theorem 3.7.Lemma 4.9 The expected value of PF2�(R) jF j isO(n).Proof. The objects are open halfspaces, the com-plements of the input halfspaces. The parameter bis �ve: one halfspace determines the face containinga trapezoid, two more halfspaces determine the twoedges on that face that determine the trapezoid, andtwo more determine the vertices of the trapezoid. Theranges are polyhedra with p� as one vertex and up to�ve sides. Nondegeneracy implies that � is functional.Also �0(r) = O(r): the trapezoidal subdivision of thesurface of P(R) forms a planar graph.Note that P(S) consists of the union of the regionsF \ P(S), over all F 2 �(R). The halfspaces of Sthat contribute to a nontrivial region F \ P(S) arethe complements of those in F ^ S.

Since every irredundant halfspace determines a ver-tex of P(S), we need not consider all the regionsF 2 �(R), only those that contain at least one vertexof P(S). Call this set of regions ��(R). Certainly��(R) contains at most A regions. The followinglemma is a corollary of Theorem 3.7.Lemma 4.10 The expected value ofPF2�� (R) jF j isO(n=r)A, for sample size r.Proof. As in the previous lemma, where the � rela-tion is de�ned only for ranges that contain a vertexof P(S). Plainly �0(r) � A.Now suppose the sample size r is at least A2. ThenPF2�� (R) jF j is O(n=A) on the average. This obser-vation provides a fast means of �ltering out redundanthalfspaces, making two assumptions: we can obtainan estimate of A, and we have a fast means of deter-mining ��(R) and the sets F ^ S for all F 2 ��(R).We next consider these two problems.The regions F 2 �(R) and the corresponding F^Scan be readily obtained in O(n log r) expected timeusing the randomized incremental algorithm givenabove. To determine ��(R) from �(R), we musthave a fast means of determining the regions F thatcontain no vertices of P(S), or conversely, the regionsthat contain only parts of faces or edges. This isdone as follows: let t be a triangular face of a regionF 2 �(R), with p� a vertex of t. Then the polygonPt = t\P(S) can be determined using the algorithmof Kirkpatrick and Seidel [31] in time on the orderof jF j logAt, where At is the number of sides of Pt.All but two of the sides of Pt correspond to facesof P(S), so that the total time to compute all suchpolygons is expected O(n logA0), where A0 is the to-tal number of faces of P(S) identi�ed. If a regionF 2 �(R) contains no vertices of P(S), the polygonscorresponding to faces of F completely determine thestructure of F \P(S), and this can be veri�ed or dis-proven in O(jF j) time. Thus the regions in ��(R)and their corresponding halfspaces can be found inO(n)(log r + logA0) time.Now to consider the problem of estimating A, orrather, of using only lower bounds for A. To do this,determine ��(R) for a sequence of sample sizes, usingat each step an estimate A� of A. Initially, the A�value is some constant, say 10. In the general step,we have an estimate A� and a set of halfspaces Sstill being considered. If A� > jSj, then computeP(S) using the randomized incremental algorithm.Otherwise, we compute ��(R) and the sets F ^ Swith r = jRj = A�, and include in S those halfspaceswith complements in [F2�� (R)F^S. Suppose that atleast half of the current halfspaces are eliminated inClarkson/Shor RS2 February 15, 1995 Page 14
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in random order to a set R, maintainingP(R) as eachhalfspace is added. To make the algorithm faster,some additional information is used: we maintain aconict graph, which is a bipartite graph on the half-spaces of S and the edges of P(R), with a graph edgebetween a halfspace H 2 S and an edge e 2 P(R)when e is not contained in H. This graph can be rep-resented by linked \conict lists" that give the setse ^ S for e 2 P(R), and H ^ P(R) for H 2 S n R,where we identify P(R) with its set of edges.In the general step of the algorithm, a halfspace His added to R, making the new set R0 = R [ fHg.At this step, the edges of P(R) that are retained inP(R0) are those not in H ^ P(R). Some edges inH^P(R) have both vertices not inH. Such edges canbe discarded. The remaining edges in H ^ P(R) arecut by the bounding plane of H. A facet G of P(R)that is cut by the bounding plane of H is incidentto two such edges e1 and e2. Such a facet gives riseto a new facet G0 of P(R0), bounded by edges notin H ^ P(R), and by new edges e01 = e1 \ H, e02 =e2\H, and e12, which is the intersection of Gwith thebounding plane of H. The edge e12 is also incidentto the face of P(R0) that is the intersection of P(R)with the bounding plane of H.To update the representation of P(R0) to reectthese changes, we must �nd, for each edge e1 cutby the bounding plane of H, the faces F incident toe1 and the edge e2 incident to F that is also cut.This is easily done by walking around F from e1 toe2, staying outside of H, so that the edges traversedare in LH . In this way, the polytope P(R0) and thechanges in incidence relations are obtainable in timeproportional to the number of edges in LH .It is easy to see that the halfspaces in the conictlists for the three edges e01, e02 and e12 are containedin the conict lists of e1 and e2. (Any halfspace thatcontains these two edges also contains their convexhull, which includes the new edges.) These lists aresearched to �nd the conict lists for the three newedges. The conict lists of all new edges in P(R) arefound in this way.This is the entire algorithm, assuming appropriateinitialization. A moment's thought shows that whenadding a halfspace H 2 S, the work performed isproportional to the total number of halfspaces in theconict lists of the edges in the conict list of H. ByTheorem 3.9, we haveTheorem 4.7 Given a nondegenerate set S of nhalfspaces in E3, the randomized incremental algo-rithm computes P(S) in O(n logn) expected time.Proof. We apply Theorem 3.9 with b = 4; the ob-jects are the halfspaces in S, the ranges F are line

segments in E3, and e is de�ned by a set X of half-spaces if e is an edge of the intersection of the closedcomplements of the halfspaces in X. As discussedabove, the update condition holds, and �0(r) = O(r).We also have the following extension.Theorem 4.8 Given a nondegenerate set S of nhalfspaces in Ed, a randomized incremental algorithmcomputes P(S) in O(nbd=2c) expected time.Proof. The algorithm is similar to that above; wemaintain P(R) as halfspaces are added to R. Theincidence graph of P(R) is maintained, as in thebeneath-beyond method[20], and the conict lists ofedges (one-dimensional faces) are maintained. To �ndconict lists for new edges (corresponding to edge e12above), we must �nd pairs of edges e1 and e2 on thesame 2-face (polygonal region) and cut by the bound-ing hyperplane of an added halfspace. To do this, puteach edge cut by the bounding hyperplane into a listLG for each incident 2-face G, and maintain a list ofcut 2-faces. Having done this for all conicting edges,the desired pairs are those in the two-element lists LGfor cut 2-faces G.The application of Theorem 3.9 is similar to thatfor the previous theorem, with b = d+ 1.A linear-space variant. A simple example,where P(S) is the dual of a cyclic polytope [20], showsthat the above algorithm requires 
(n log logn) ex-pected space. We next give a variant algorithm forE3 that requires O(n) space in the worst case, withthe same O(n logn) expected time bound.The variant is as follows: rather than maintain theentire conict graph, it is enough to maintain, foreach halfspace H not yet added, a single edge C(H)with which it conicts. When adding H, we canquickly determine all the edges with which it conicts,by searching the edges of P(R) starting at C(H).(Note that the set of conicting edges gives a con-nected subgraph of the 1-skeleton of P(R).) By ournondegeneracy assumption, each vertex of the poly-tope is incident to three edges, so this searching re-quires constant time per conicting edge.This variant has a slightly di�erent update prob-lem: suppose a halfspace H is to be added, afterwhich edge e will no longer be present in the inter-section. If e = C(H 0) for some halfspace H 0, we must�nd some edge e0 in P(R0) that conicts with H 0. Todo this, we search the edges of P(R) starting at e,maintaining the condition that the edges we exam-ine conict with H 0. At some point, we �nd an edgethat conicts withH 0 and also either does not conictwith H, or is cut by the bounding plane of H. In theformer case, we have an edge of P(R0) that conictsClarkson/Shor RS2 February 15, 1995 Page 13
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Method II also chooses a random sample R � S ofsize r, and builds T (R). However, as in the secondbasic method above, while T (R) is built the locationsof the endpoints of SnR are maintained. The sets F^S are then found by walking along each segment in SnR, �nding conicts as in the second basic algorithm.If at any time, either R is found not to be a goodsample, or the total number of conicts found exceeds2Ktotn, method II restarts with another sample.These two methods are run concurrently until onestops with a good sample. The algorithm then recurs.(If method I succeeded, the sets F ^ S are generatedagain for each F 2 T (R) in turn.)Before proving bounds for this algorithm, we makethe following simple observation.Lemma 4.5 For X a nonnegative random variableand event B, we have E[XjB] � EX=ProbfBg.Proof. Easy.Theorem 4.6 Suppose S is a set of N nondegener-ate line segments in the plane, with A pairs of thesesegments intersecting. The pairs of line segments ofS that intersect can be computed in O(N ) space andO(A +N logN ) expected time.Proof. The space bound is obvious. For the timebound, we �rst show bounds for methods I and IIto divide the problem. We will bound the work formethod I when A > npn, and for method II whenA � npn. (Here A represents the number of inter-secting pairs in the current subproblem.)The expected time required by method I is O(A+nr), since the time needed to check all segmentsagainst all F 2 T (R) is proportional to n(r + A0),where A0 is the number of intersection points ofR. (The expected time O(A + n logn) needed bythe second algorithm to compute T (R) is dominatedby O(A + nr), remembering that r = pn.) FromLemma 4.1, EA0 = O(Ar2=n2) = O(A=n). We mustuse, however, the expected value of A0, conditionedon R being a good sample. By Lemma 4.5, the boundEA0 = O(A=n) still holds with this condition. There-fore, method I requires O(nr + A) to check a givensample, which is O(A) for A > nr. Since sampleR is bad with probability no more than 1=n10, wehave that the expected time for method I to �nd agood sample is O(nr+A)(1 + 1=n10+ 1=n20+ : : :) =O(nr + A).The expected time for method II to construct T (R)is O(A + n logn); this includes the work to main-tain the locations of endpoints of S n R. We need tobound the time required to construct the sets F ^ Sby walking along the segments of S n R. To do this,

we use the same relation � as in Lemma 4.3. Thework for F 2 F0R is jF j, so by Theorem 3.7, the to-tal work to build the sets F ^ S is O(n=r)�0(r), orO(n=r)O(r + Ar2=n2) = O(n + Ar=n). For A �nr, this is O(n). Thus the expected work to �ndthe sets F ^ S, for any given random subset R, isO(A + n logn).If A � nr, then by Lemma 4.4, with probability3/4 the totalPF2T (R) jF j is no more than Ktot(n+Ar=n) � 2Ktotn. Combining this with the conditionthat R be a good sample, the probability that methodII will need to restart with a new sample is no morethan P = 1=4 + 1=n10. By Lemma 4.5, the expectedtime to construct the sets F ^ S, given that sampleR does not require method II to restart, is O(A +n logn)=(1 � P ) = O(A + n logn). Thus method IIrequires O(A + n logn)(1 + P + P 2 + : : :) = O(A +n logn) expected time.Since we run methods I and II concurrently untilone succeeds, the total time to run them is no morethan twice the minimum time of the two, and so isO(A + n logn) for all values of A. Now a two-levelinduction completes the proof of the theorem: thebase case is obvious, and the work at the top level isO(A+ n logn) + XF2T (R)AF + jF j log jF j� O(A + n logn) +O(logn) XF2T (R) jF j;where AF is the number of intersections in cell F .Finally, the sum T1(R) above is O(n) if method IIsucceeded, and its expected value is O(Ar=n) evenwhen conditioned on the success of method I, byLemma 4.5. Since the induction has only two levels,multiplication by constant factors at each level doesnot alter the asymptotic bound, and so the theoremfollows.4.2 Convex hull algorithmsIn this section, we give algorithms for computing theconvex hull of a set of sites in E3, or equivalently,of determining the intersection P(S) of a set S of nclosed halfspaces in E3. We assume that the half-spaces are nondegenerate, so that no four intersectat a common point. We also extend these results tohigher dimensions.To �t in our framework, we will use the open half-spaces H, the complements of H 2 S, and refer tothis collection as S. The intersection P(S) is the setof points not in [H2SH.One algorithm we give is randomized and incre-mental. As in x1.3, it adds the halfspaces one by oneClarkson/Shor RS2 February 15, 1995 Page 12



www.manaraa.com

only the conicts between line segment endpoints andtrapezoids. That is, for each cell there is a list of linesegments whose left endpoints are in the cell. Whenadding a segment, we need to traverse the current di-agram along the segment to determine all of the cellsconicting with that segment. Such endpoint con-icts are readily updated, and plainly only O(n+A)storage is necessary.Unlike the �rst algorithm, we must prove a timebound for the traversal of the diagram by a newlyadded segment s. Such a traversal would walk aroundthe boundaries of the cells that intersect s. A dif-�culty here is that the upper or lower boundariesof a cell F may be split into many edges, when Fshares those boundaries with many cells. The fol-lowing lemma shows that examining these boundaryedges is not expensive on the average. Call the por-tion of a cell's boundary that is contained in input linesegments that cell's segment boundary (as opposed tothe vertical bounding edges of the cell).Lemma 4.3 The expected number of edges thatbound trapezoids conicting with added segment s atstep r is O(1 +Ar=n2).From this lemma, we have a total expected timeO(n+A) for determining conicts over the course ofthe algorithm.Proof. By the nondegeneracy assumption, everytrapezoid shares its vertical boundaries with O(1)other trapezoids, so we are mainly concerned withedges on segment boundaries. We bound, equiva-lently, the expected number of cell corners that ap-pear on a trapezoid's segment boundary. We applyTheorem 3.7, but using a set FS and de�ning relation� that is di�erent from that used above. Here b = 6,and the region of interest de�ned by a set X 2 S(6)consists of the interior of a trapezoidal diagram cellde�ned by four or fewer of the segments of X, to-gether with a vertical edge with an endpoint on thecell's segment boundary. The other endpoint of thevertical edge is either the endpoint of a line segmentin X, or the intersection point of two segments inX. That is, F0S consists of pairs of trapezoids Q andvertical edges e, where e is a boundary of a trapezoidsharing an upper or lower boundary with Q. To provethe lemma, we want to bound the expected numberof ranges in F0R at step r + 1 for which the trape-zoid of the range meets s. The expected value of thisquantity is no more thanXF2FS ProbfF 2 F0R; s 2 F ^ Sg;

orXF2FS jF jn� rProbfF 2 F0Rg = 1n� r n� rr O(�0(r))by Theorems 3.7 and 3.6 and their proofs. The lemmafollows, since jF0Rj is no more than twice the numberof vertical edges in T (R); from Lemma 4.1 and pla-narity of T (R), we have EjF0Rj = O(r + Ar2=n2),which also bounds �0(r), and so gives the lemma.To do better still in the space bound, we use onethe above algorithms as a major step in a third al-gorithm. The third algorithm uses random samplingof line segments to apply divide-and-conquer to theproblem. The algorithm is recursive, but has a recur-sion depth of only 2.The idea is to �nd all intersecting pairs of S by�nding all intersecting pairs of F ^ S, for F 2 T (R).(Also including the intersecting pairs in R.) To showthat this approach is helpful, we use the followingcorollary.Corollary 4.4 Suppose S is a set of n line segmentsin the plane, with A pairs of these segments inter-secting. Let R be a random subset of S of size r.There exist constants Kmax and Ktot such that, withprobability at most 1=4,Ktot(n +Ar=n) � T1(R) = XF2T (R) jF j;and with probability at most 1=n10,Kmax(n=r) logn � maxF2T (R) jF j:Proof. The proof follows that of Corollary 3.8.If the second inequality does not hold, the sampleR will be said to be \good." We will use good samplesfor divide-and-conquer. Let N denote the size of thetop-level input set, and use n for the input size at thegeneral step of the recursion. The scheme of the al-gorithm is to �nd a good sample of size r = pn, com-pute the sets F ^ S, and recur. The recursion stopswhen an input set has no more than pN segments;since the input size n is N at the top, O(pN logN )at the next, and then O(N1=4 log3=2N ), the recursiondepth is 2.The key question here is: how can we �nd the setsF ^ S using only O(n) storage? Our algorithm em-ploys two methods to do this; both methods begin bychoosing R at random. Method I then simply checksall segments in S nR with all cells in T (R), tallyingup the values jF j, checking if R is a good sample.When R is found not to be a good sample, another ischosen, repeating until a good sample is found.Clarkson/Shor RS2 February 15, 1995 Page 11
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on the adjacency information recorded for each trape-zoid. We assume that a trapezoid \knows" only itsupper and lower bounding line segments, its cornerpoints, and the trapezoids with which it shares verti-cal boundaries. We will not assume that a trapezoidknows all of the (possibly very many) trapezoids withwhich it shares upper and lower bounding segments.(Such information is of course readily obtained forany given diagram.) That is, the �rst algorithm willnot need to preserve such information as the diagramis built. For the second and third algorithms, weassume that the diagram is represented as a planarsubdivision in one of the standard ways[34, 27].For the �rst algorithm, the line segments are addedin random order, one by one, to a set R. The dia-gram T (R) is maintained as R grows. In addition,a conict graph is maintained, as discussed in x3.3.Here the conicts are between line segments in S nRand the interiors of trapezoids in T (R). There is aconict between a segment and a trapezoid (interior)when they intersect. The conict graph can be rep-resented by lists: for each segment s the set s^F0R ismaintained as a list, and for each cell F of T (R), theset of conicting segments F ^ S is maintained as alist. When adding a segment s, the cells that must bedeleted are found by examining s ^ T (R). (Here weidentify T (R) with the set of cells in it.) These cellsare then split up by s, each into at most four pieces.Some of these pieces will merge together for new cells,since s will reduce the visibility of some points, andso shrink some vertical bounding edges.The edges in the conict graph to the new cellsthat result from s can be found by examining the listsF^S, for the cells F 2 s^T (R). To satisfy the updatecondition of Theorem 3.9, we need to show that thesenew edges can be found in time linear in the total ofthe lengths of the lists F ^ S for F 2 s ^ T (R). Theonly nontrivial problem here is that when some piecesof deleted cells merge to make a new cell F , we musthave a given segment conicting with F representedonly once in the list for F ^ S. We can maintain thisnonredundancy as follows. (We are sketchy here sincethe next algorithmdescribed is superior in theory andprobably in practice.) Maintain the conict lists forsegments in left-to-right order of intersection. Usethis order for s to merge pieces of deleted cells inleft-to-right order. Determine the conicts for eachpiece. When constructing a conict list for a newcell, examine the conicts for a given piece, and forsegment s0 conicting with that piece, walk from thecurrent piece to the remaining ones that will merge forthe new cell, deleting s0 from the conicts for thosepieces. (We assume that appropriate cross-pointersbetween lists are maintained.)

We are ready to apply Theorem 3.9 to the anal-ysis of this algorithm. To estimate �0(r), we havethe following theorem. We use jT (R)j to refer to thenumber of cells of T (R).Lemma 4.1 Suppose S is a set of n nondegenerateline segments in the plane, with A intersections. LetR be a random subset of S of size r. The numberof cells in T (R) is no more than O(r + A0), whereA0 is the number of intersecting pairs of segments ofR. The expected value of A0 is Ar(r � 1)=n(n � 1).Therefore EjT (R)j = O(r +Ar2=n2).Proof. The �rst statement is an obvious conse-quence of the fact that T (R) is a planar map.Let ZS be the set of intersection points of S, andZR the set of intersection points of R. For z 2 ZS ,let Iz = 1 when z 2 ZR, and 0 otherwise. ThenA0 =Pz2ZS Iz, soEA0 = Xz2ZSEIz = Xz2ZS Probfz 2 ZRg= A�r2���n2�;since z 2 ZR if and only if the two line segments thatmeet at z are both in R.Theorem 4.2 For a set S of n line segments hav-ing A intersecting pairs, the trapezoidal diagram T (S)can be computed in O(A+ n logn) expected time.Proof. As discussed in x2, T (S) corresponds to F0S ,with b = 4 and � de�ned so that F�X for X 2 S(4)when F is a cell in T (X). The nondegeneracy con-ditions imply that � is functional. From the lemmaabove, �0(r) = O(r + Ar2=n2), and with the updatecondition satis�ed we have that the expected timerequired by the algorithm is proportional ton X1�r�nO(r + Ar2=n2)=r2 = O(A+ n logn):The space bound for this algorithm is certainlyO(n logn + A) on the average. Moreover, at stepr, the conict graph has O(n + Ar=n) edges. How-ever, a simple example shows that the conict graphcan grow to 
(n log logn) edges over the course ofthe algorithm, so we do not have expected space pro-portional to the O(n + A) output size. However, wecan achieve O(n + A) worst-case space by a simplechange as in Mulmuley's algorithm [35] and similarto that described in [16] (and below) for convex hulls.This change is to store only part of the conict graph,Clarkson/Shor RS2 February 15, 1995 Page 10
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in S are added one by one in random order to a set R.As these objects are added, the set of regions F0R ismaintained, and updated as each object is added. Tomake this algorithm faster, a conict graph is main-tained between the objects in SnR and the regions inF0R. This graph has an edge between each object andregion that have nonempty intersection, so that theobject prevents the region from being inF0S . When anobject s is added to R, the regions adjacent to s in theconict graph are deleted from F0R, and new regionsare added that result from the presence of s. Thefollowing theorem gives a time bound for instances ofthis general algorithm in which an update conditionholds. The update condition is this: the time to adda point s to R, and to update F0R and the conictgraph, is linearly proportional to the number of ob-jects that conict with regions that conict with s.That is, the work is proportional to PF2s^F0R jF j.Plainly, the update time is at least as long as this.In many instances, this linear time su�ces. Put an-other way, the update condition says that the workperformed at a step is linear in the number of conict-graph edges deleted at that step. Since no work isdone for an edge except when creating or deleting it,with the update condition the total work is propor-tional to the number of edges created, which is alsothe number of edges deleted.Theorem 3.9 Randomized incremental con-struction. In an instance of the general incrementalconstruction algorithm, suppose the update conditionholds and � is functional. Then the expected time re-quired by the instance is O(n)P1�r�n �0(r)=r2.Proof. It is enough to show that the expectedtime required to add object s 2 S at step r + 1 isO(�0(r))(n�r)=r2. This fact is a consequence of The-orem 3.7. By the update condition, the time requiredis proportional to XF2FS jF jIF ;where IF = 1 when both F is in F0R and F meets s,and IF = 0 otherwise. Here R is the current (random)set of r objects.The expected value of this quantity isXF2FS jF jProbfF 2 F0R; s 2 F ^ Sg;or XF2FS jF j2n� rProbfF 2 F0Rg = T2(r)=(n� r);

from the proof of Theorem 3.6. By Theorem 3.7, thisquantity is on the order of O(�0(r))(n� r)=r2.This completes the proof. Here is another proof:by the remarks above, we may bound the work of thealgorithm by bounding the number of conict graphedges created in the course of the algorithm. A rangeF 2 FS contributes jF j edges to the number createdat step r + 1 if F =2 F0R but F 2 F0R0 , where R0 =R [ fsg. This occurs if and only if jF ^ R0j = 0,XF � R0, and s 2 XF , so the expected number ofedges created isXF2FS jF jProbfF 2 F0R0 ; s 2 XF g:Since R0 is a random subset of S, s is a random el-ement of R0. Given that F 2 F0R0 , the probabilitythat s 2 XF is no more than b=(r + 1). Hence theexpected number of edges created isXF2FS jF j br+ 1ProbfF 2 F0R0g = bET1(R)=(r + 1);from the proof of Theorem 3.6. By Theorem 3.7 thisis O(�0(r))(n� r)=r2.4 Algorithmic applications4.1 Line segment intersectionsIn this section, three algorithms are given for theproblem of constructing T (S). All three requireO(A + n logn) expected time. The �rst algorithm isan instance of the randomized incremental construc-tion technique. The second algorithm is a re�nementof the �rst, requiring O(n + A) space in the worstcase. The third algorithm requires only O(n) spacein the worst case. (To be precise, the third algorithmcan only be said to compute line segment intersec-tions and vertical visibility information; it does notcompute the complete trapezoidal diagram.)For convenience of presentation, we assume thatthe line segments are nondegenerate, so that no threeintersect at the same point, and no endpoints or in-tersection points are covertical (on the same verticalline). These conditions can be simulated using ap-propriate small perturbations, so little loss of gener-ality is implied. (Some loss is entailed, however: wemight prefer a measure of A that counts the numberof intersection points, not the number of intersectingpairs. We can go further in this direction than willbe reported here.)One important issue here is the representation ofadjacency information for trapezoidal diagrams. Forthe �rst algorithm, we will assume some limitationsClarkson/Shor RS2 February 15, 1995 Page 9
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Now using Lemma 2.1 and the assumption that �is functional, the sum in the last expression above isbounded:XF2FS ProbfF 2 F0Rg�jF jc �= XF2FS �jF jc ��n � iF � jF jr � iF ���nr�� (n� r + c)c(r � b)c XF2FS �jF jc ��n� iF � jF jr � iF � c ���nr�= EjFcRj (n� r + c)c(r � b)c :The theorem follows.In many applications, we are only interested in thecases c = 1 or c = 2, with W (j) = j.Theorem 3.7 With the terminology of x2 and above,suppose the relation � is functional. ThenT1(r) � n� r + 1r � b �0(r)eb(1 + O(1=b) + O(b=r))andT2(r) � (n� r + 2)2(r � b)2 �0(r)(eb=2)2(1+O(1=b)+O(b=r));as b; r!1.In some cases, the constant factor for T1(r) is ex-actly b.Proof. The result follows from Theorem 3.6; forthe c = 1 case, we need to bound EjF1Rj above by�0(r)eb(1+O(1=b)+O(b=r)). From Theorem 3.2, wehavejF1Rj � T0(bbr=(b+ 1)c)eb(1 + O(1=b) + O(b=r)):Note that T0(bbr=(b+1)c) here refers to random sub-sets of R; there is no ambiguity, since random subsetsof R are random subsets of S. The result follows byde�nition of �0(r). The c = 2 case follows similarly.As noted above, the function x� is concave in xfor 0 � � � 1, as is log(1 + x). Thus when j� workis done for a range of F0R meeting j objects of S,the average work per range of F0R is O(n=r)�, andsimilarly if log(1 + j) work is done, the average workis O(log(n=r)).The following is a combination of the above theo-rem and Corollary 4.2 of [12].Corollary 3.8 With the terminology of x2 andabove, suppose the relation � is functional. Suppose

jFS j � K�nb� for some constant K. Then for anyq � 0, there exists zr;q = O(b log r) + q + lnK asr !1 such that with probability 3=4 � e�q , both ofthese conditions hold:XF2F0R jF j � O(n=r)�0(r)and maxF2F0R jF j � zr;qn=r:Proof. For the �rst condition, we use Theorem 3.7with c = 1. By Markov's inequality, the probabilitythat T1(R) exceeds four times its mean is no morethan 1=4. For the second condition, we use Corol-lary 4.2 of [12], which implies that the probabilitythat the second condition fails is at most e�q . Forcompleteness, we prove the second bound here: sup-pose Pk is the probability that maxF2F0R jF j � k.ThenPk = Prob8>><>>: _F2FSjF j�k F 2 F0R9>>=>>; � XF2FSjF j�k ProbfF 2 F0Rg:As in Lemma 2.1 with c = 0,ProbfF 2 F0Rg�nr� � �n � jF j � br � b � � �n� k � br � b �for jF j � k, so Pk�nr� is no more thanXF2FS �n� k � br � b � � K�nb��n � k � br � b �� K�rb��n � kr �For k = dzn=re, we use Stirling's approximation, thebound �ab� � (ae=b)b, and the bound 1 + x � ex toobtain Pk � K(er)bpze�z, which implies that anappropriate value zr;q can be chosen to satisfy theconditions of the corollary.3.3 Randomized incrementalconstructionIn this section, we prove an expected-time bound forrandomized incremental construction, within the for-mal framework of x2. The construction problem as-sociated with an instance of this framework is to �ndF0S given an input set S.As discussed in x1.3, randomized incremental con-struction solves this problem as follows: the objectsClarkson/Shor RS2 February 15, 1995 Page 8
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Theorem 3.5 Let S � E3 be a set of n points thatare the vertices of a convex polytope. Suppose S isnondegenerate, that is, has no four points coplanar.Then S has 2(j + 1)(n� j � 2) j-facets.Using well-known relations between Voronoi dia-grams in the plane and convex hulls of point sets inE3, this result gives a sharp bound on the numberof vertices of order j Voronoi diagrams. This is analternate proof of the bound of D. T. Lee for thisquantity. This result is stated as Corollary 13.35 of[20], and given yet another proof.Proof. Suppose R � S is random, of size r with4 � r � n. Since S forms the vertices of a convexpolytope, so does R � S. Since S is nondegenerate,so is R. Therefore jF0Rj, the number of facets of theconvex hull of R, is 2(r�2) [20, Theorem 6.11]. Withthe nondegeneracy condition, the � relation here isfunctional, and by Lemma 2.1 we have for 4 � r � n,Xj�0�n� j � 3r � 3 �jFjSj = �nr�EjF0Rj = 2(r � 2)�nr�:The same expression holds for r = 3, since any set of3 points of S de�nes two j-facets. The values jFjSj =2(j + 1)(n � j � 2), for 0 � j � n � 3, satisfy theseequations, sinceX0�j�n�3�n� j � 3r � 3 �(n� j � 2)2(j + 1)= 2(r � 2) X0�j�n�3�n � j � 2r � 2 ��j + 11 �= 2(r � 2)�nr�;using well-known binomial coe�cient identities (seee.g. [26]). The matrix associated with this linearsystem has a determinant with absolute value 1, us-ing expansion by minors, and using the facts that�n�j�3r�3 � = 1 for r = n � j � 0, �n�j�3r�3 � = 0 forr > n� j � 0. Thus the given solution is unique.In the nondegenerate case but with S not necessar-ily the vertex set of a polytope, we can express jFjSjas jFjSj = X3�r�n� r � 3n� 3� j��nr�(�1)j+r+nT0(r):If only this implied something interesting about jFjS j!3.2 Probabilistic divide-and-conquerThis section gives results implying that random sam-pling can be used e�ectively for a divide-and-conquer

approach to geometric problems. A corollary is alsogiven that combines the results of [12] with the theo-rem.To state the main theorem needed, some terminol-ogy and notation in addition to that in x2 is useful:For nonnegative integers k and c, let kc denote the\falling power" c!�kc�. Recall that a function W fromthe reals to the reals is concave whenW (�x+ (1� �)y) � �W (x) + (1� �)W (y);for all x; y and � with 0 � � � 1. (That is, whenthese values are de�ned.) Note that x� is a concavefunction of x, for 0 � � � 1, as is the logarithmfunction.For R � S, nonnegative integer c, and function Wfrom the nonnegative reals to the nonnegative reals,let TW;c(R) denoteXF2F0R W ��jF jc �� :That is, TW;c(R) is the total work done for F0R whenW ��jF jc �� work is done for the jF j objects of S meet-ing F 2 F0R. The earlier notation Tc(R) is the caseW (j) = j. Finally, let�0(r) = max1�z�r T0(z):Theorem 3.6 With the terminology of x2 and above,suppose the relation � is functional, the function Wis concave, and c is a nonnegative integer. SupposeR is a random subset of S of size r. ThenETW;c(R) � W �(n � r + c)c(r � b)c Kc;b�EjF0Rj;where Kc;b = EjFcRj=EjF0Rj.Proof. Let IF be the indicator function for theevent F 2 F0R, so IF = 1 when F 2 F0R and 0 other-wise. Then ETW;c(R) isE� XF2FS IFW ��jF jc �� �= XF2FS EIFW ��jF jc ��= XF2FS ProbfF 2 F0RgW ��jF jc ��� EjF0RjW �XF2FSProbfF 2 F0Rg�jF jc �=EjF0Rj�;using the concavity of W and the fact that EjF0Rj =PF2FS ProbfF 2 F0Rg.Clarkson/Shor RS2 February 15, 1995 Page 7



www.manaraa.com

XF � R and jF ^ Rj = c, so the above holds withequality.The second inequality of the lemma statement fol-lows from �n�b�jF jr�b�c � � �n�iF�jF jr�iF�c � for iF � b (and forthe relevant values of n, r, c, and jF j).3 The probabilistic theorems3.1 Improved bounds for (�k)-setsRather than prove an upper bound for (�k)-sets only,we prove a much more general result, from which the(�k)-set bound will follow as a corollary.Theorem 3.1 With the notation of x2, for k > 1X0�j�k jFjSj � 4kbT0(bn=kc)(1 + O(k=n));as k=n! 0.Proof. Let R � S be a random subset of size r =bn=kc, with k > 1. From Lemma 2.1 with c = 0, weknow that T0(r) isEjF0Rj � Xj�0�n� b� jr � b �jFjS j��nr�� X0�j�k�n� b� jr � b �jFjSj��nr�� X0�j�k jFjSj=(4kb)(1 + O(k=n)):The last inequality is easily proven using Stirling'sformula. (Hint: reduce to within 1 + O(k=n) of1kb �1 + krn(n� k � r)�n�k�r�1� kn�r �1� rn�kusing Stirling's formula, then observe that the prod-uct of the middle two terms is 1 + O(k=n) and thelast term is bounded below by 1/4.)The following theorem will be of particular interestin the applications in the next section.Theorem 3.2 With the notation of x2,jF1Sj � ebT0(bbn=(b+ 1)c)(1 + O(1=b) +O(b=n));andjF2S j � (eb=2)2T0(bbn=(b+2)c)(1+O(1=b)+O(b=n)):

Proof. Let R � S be a random subset of size r =bbn=(b+ 1)c. From Lemma 2.1 with c = 0,EjF0Rj � Xj�0�n� b� jr � b �jFjS j��nr�� �n� b� 1r � b �jF1Sj��nr�;and so jF1Sj � EjF0Rjn� bn� r�nb���rb�:The �rst bound of the theorem readily follows, andthe second bound is similarly proven.Theorem 3.1 gives a bound on the quantity ĝk;d(n),de�ned as follows: suppose S � Ed is a set of npoints, F is the set of halfspaces in Ed, and FS is theset of halfspaces bounded by hyperplanes that area�ne hulls of points in S. Then ĝk;d(n) is the maxi-mum, over all such S, ofP0�j�k jFjSj. A member ofFjS will be called a j-facet of S.Corollary 3.3gk;d(n) = O(nbd=2ckdd=2e);as n=k!1.Proof. It is easy to show, using the results of [20,x3.2], that gk;d(n) = O(ĝk;d(n)).We can assume that S is nondegenerate, so that nod+ 1 points of S are on a common hyperplane. Thisis no loss of generality, as gk(S) attains its maximumwhen S is nondegenerate [20]. To apply the theoremto ĝk;d(n), S is a set of points in Ed (or more precisely,a collection of singleton sets of points of Ed). The setof ranges F is the set of open halfspaces of Ed, andwith b = d, the � relation is de�ned as follows: forX 2 S(b), let F�X when jXj = b and F is bounded bythe a�ne hull of the points in X. The upper boundfor ĝk;d(n) follows, using the upper bound O(rbd=2c)for jF0Rj, here the number of facets of a polytope withr vertices [20, x6.2.4]Lemma 3.4 gk;d(n) = 
(nbd=2ckdd=2e);as n=k!1.Proof. Omitted. Cyclic polytopes[20] realize thebound, as can be shown using the techniques of thetheorem, or constructively [19].Although bounds on jFjSj, for given j, seem to bedi�cult to obtain, the following result is of interest.Clarkson/Shor RS2 February 15, 1995 Page 6
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or regions.In applications, the ranges will be de�ned by theobjects in some way. When computing convex hullsof points in the plane, the objects are points, and theranges are halfplanes, so the ranges de�ned by theobjects are those open halfplanes that are boundedby lines through pairs of the points. The notion of\de�ned" is formalized as follows: for integer b, letS(b) be the collection of subsets of S with b or fewerelements, and let � be a relation between F and S(b).A range F 2 F is de�ned by X 2 S(b) if F�X, thatis, if the � relation holds between X and F , so the setof ranges FS de�ned by the objects in S isFS = fF 2 F j F�X;X 2 S(b)g:In problems of construction, the desired computa-tion is this: determine all ranges F 2 FS such thatF \ s is empty for all objects s 2 S. For convexhulls, this is the set of all open halfplanes in FS thatcontain none of the input points. For Voronoi di-agrams in the plane, the ranges are open disks orhalfspaces, the objects are points (singletons), andthe � relation has F�X for X 2 S(3) when F is theopen disk bounded by the circle through the pointsin X, and F�X for X 2 S(2) when F is an openhalfspace bounded by the line though the points inX. The empty members of FS are Delaunay disksor empty halfspaces. For trapezoidal diagrams of linesegments in the plane, the objects are line segments,the ranges are open \trapezoids," and the parameterb is four. The relation � is de�ned as follows: F�Xfor X 2 S(4), when F is a (generalized) trapezoid inT (X).While the desired ranges in construction problemshave no intersections with S, it also will be usefulto consider ranges that do meet objects in S. ForF 2 F and R � S, let F ^R denote the members ofR that have nonempty intersection with F . Similarly,for s 2 S, let s ^ F denote the members of F havingnonempty intersection with s. Let jF ^Rj denote thenumber of objects in F^R, and let jF j denote jF^Sj.For a given integer j, let FjS denote the set of F 2 Fwith jF j = j. In construction problems, the set F0S isdesired. Note that with S and F as for convex hulls,as mentioned above, the set FjS is closely related tothe set of j-sets of S, and jFjSj is the number of suchsets.For R � S, the sets FR and FjR are de�ned analo-gously: FR is the collection of all ranges F such thatF�X for some X 2 R(b), and F 2 FjR if jF ^Rj = j.Since we are mainly interested in F0R, for R � S,we will assume that if F�X for X 2 S(b) then the setF ^X is empty.

Ranges in FS are de�ned by b or fewer elements ofS. For a given F 2 FS , let iF denote the size of asmallest set de�ning F . That is, such a set X 2 S(b)has F�X, and jXj is no larger than for any such set.For each F 2 FS , pick some such X with F�X andjXj = iF , and call it XF .When there is only one such possible XF for eachF 2 FS , we say that � is functional. (Most of thetheorems hold if the number of minimalX with F�Xis O(1), not exactly 1.) For R � S we have F 2 FRif and only if XF � R. In general, the � relation isfunctional when the input S is nondegenerate.It will also be convenient here to de�ne Tc(R) asXF2F0R �jF jc �;so that T0(R) = jF0Rj and T1(R) = PF2F0R jF j. Forinteger r, let Tc(r) denote the expected value ETc(R)for random R � S of size r, with all subsets of size requally likely.With this machinery, here is the main lemma.Lemma 2.1 Let R � S be a random subset of sizer, and c � 0. ThenXF2FS �jF jc ��n � iF � jF jr � iF � c � � �nr�EjFcRj;with equality if � is functional. AlsoXF2FS �jF jc ��n� b� jF jr � b� c � � �nr�EjFcRj:Proof. For F 2 FS , let IF be the indicator functionfor the event F 2 FcR, so IF = 1 when F 2 FcR and 0otherwise. Then jFcRj =PF2FS IF , so EjFcRj isE[ XF2FS IF ] = XF2FS EIF = XF2FS ProbfF 2 FcRg� XF2FS �jF jc ��n� iF � jF jr � iF � c ���nr�The inequality here follows from the observation thatfor F 2 FS , F 2 FcR if jF ^ Rj = c and XF � R.The number of subsets of size r that satisfy theseconditions, divided by the total number of subsetsof that size, gives the probability of this event. Thenumber of such subsets is �jF jc ��n�iF�jF jr�iF�c �, choosingc elements of R from among those meeting F , andchoosing r � iF � c elements of R from among then � iF � jF j elements of S that neither meet F norare in XF . When � is functional, F 2 FcR only ifClarkson/Shor RS2 February 15, 1995 Page 5
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time equivalent to the convex hull problem via well-known duality mappings. The above average-case re-sult translates as follows to halfplane intersections:suppose S is a set of n halfplanes, and R � S is arandom subset of S of size r. Let Se denote the setof halfplanes in S that do not contain line segment e.Then the expected value ofPe2Z jSej is O(n), whereZ is the set of edges bounding the intersection of thehalfplanes inR. Intuitively, because all the halfspacesof R contain e, it is likely that most of the halfspacesof S do as well.Randomized incremental construction. Sim-ilar observations are also useful in applying divide-and-conquer to other intersection problems, such asdetermining the number of intersecting pairs in a setof n line segments in the plane, or �nding the inter-section of a set of unit balls in E3. For these prob-lems, however, we will give a simple alternative todivide-and-conquer, a technique we will call random-ized incremental construction.To motivate this technique, we give a way to speedup insertion sort. Recall that insertion sort constructsa sorted list of values froman unsorted list by buildingup the sorted list one value at a time; at each step,an item from the unsorted list is put into its place inthe sorted list. Each step of insertion sort is time-consuming because a large proportion of the sortedlist may be examined at each step. One way to speedup the sorting is to remember, for each value not yetinserted, its location in the current sorted list, andconversely to keep a list of all uninserted values thatgo in a particular location in the current sorted list.Inserting a number in the sorted list now is easy; if cgoes between a and b on the sorted list, we use ourstored information to put it there; we must also lookat the list of uninserted values between a and b, anddecide for each uninserted value in the list whetherthat value goes between a and c, or between c and b.This \sped up" insertion sort is just a version ofquicksort[30]. The time required for insertion is nowdominated by the time for the partitioning step; thistime is proportional to the number of uninserted val-ues between a and b, when we insert c between them.Suppose we insert numbers in random order. Thenat step r, the inserted values will be fairly evenlydistributed among the whole set, so the number ofvalues to partition will be about n=r on the average.The whole sorting process then takes expected timeproportional to nP1�r�n 1=r = O(n logn).Our technique of randomized incremental construc-tion is a similar transformation from an \insertion"like algorithm to a \quick" one. For �nding the con-vex polygon that is the intersection of a set S of half-planes, we determine the polygon incrementally, ran-

domly choosing a halfplane and slicing o� the portionof the current polygon that is not contained in thathalfplane. As with insertion sort, this technique isslow if we just examine the edges of the current poly-gon to determine which must be removed; instead, weremember for each edge those uninserted halfplanesthat do not contain it. The work of inserting a half-plane is now dominated by the work in updating thisedge-halfplane conict information.When we insert halfplanes in random order, the ex-pected time required to add a halfplane is O(n=r): ateach step, the set R of inserted halfplanes is a randomsubset of S, so that the facts about random subsetsdiscussed above can be applied. The algorithm re-quires optimal O(n logn) expected time.Bounding (�k)-sets. For the combinatorial prob-lem of bounding the number of (�k)-sets, it is helpfulto use a kind of converse to the above relation be-tween the convex hulls of point sets. Let S � E2 andlet R be a random subset of S of size r. Considertwo points a; b 2 S; they de�ne some line l, that hasS0 � S on one side of it. With probability roughly(r=n)2, a and b will be in R. If no points of S0 arechosen for R, a and b will be vertices of the convexhull of R. If jS0j < n=r, this will occur will prob-ability at least about (1 � jS0j=n)r � 1=e. That is,with probability proportional to (r=n)2, the pair ofpoints a and b with jS0j < n=r contribute an edge tothe hull of R. However, the convex hull of R has atmost r edges, so if z is the number of such pairs ofpoints, we know C(r=n)2z � r, for a constant C, soz � O(n)n=r. Put another way, if k = n=r, the num-ber of pairs of points of S with k or fewer on one sideis O(nk). The number of such pairs is roughly thesame as the number of (�k)-sets, so we've boundedthat quantity. In short, the bound on the complexityof the convex hull of the random subset R of size n=kimplies a bound on the number of (�k)-sets of S.2 The formal framework andmain lemmaThe ideas in this paper can be applied to a variety ofgeometric structures. To aid and to show this gener-ality, a formal and abstract framework for geometriccomputations is useful. This framework is similar tothat in [12].Let S be a set of n subsets of Ed; the elements ofS will also be called objects. The set S will be theinput to a geometric computation, and so could bea set of points (singleton sets), line segments in theplane, halfspaces, or balls. Let F be a set of subsetsof Ed, which we will term ranges, as in range query,Clarkson/Shor RS2 February 15, 1995 Page 4
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bounds are a corollary of more general results thatare intimately related with the probabilistic resultsfor the complexity analysis of the our algorithms.As a byproduct of our techniques, we give an al-ternative derivation of a bound for the complexity ofhigher order Voronoi diagrams.The concept of a k-set is a generalization of the con-cept of a convex hull facet, which can be viewed as ad-set. The new bound is a generalization of the knownupper bound O(nbd=2c) for the number of facets of aconvex polytope with n vertices. Indeed, the newbound follows from this polytope upper bound. Ourbound is within a small constant factor of the tightbounds known for the plane [25, 3, 42], and it im-proves previous results for d = 3 [18, 8, 12]; appar-ently no interesting bounds were known before forhigher dimensions. The proof of the bound is alsoconsiderably simpler than those given for the earlier,weaker bounds.Improved bounds for range reporting. Thehalfspace range reporting problem is this: for a setS of n points, build a data structure so that givensome query halfspace, the points of S in the half-space can be reported quickly. The new bound for(�k)-sets is applied in this paper to sharpen the anal-ysis of the algorithm of [8] for halfspace range report-ing. It is also used to analyze two new algorithmsfor that problem. One algorithm is shown to requireexpected O(nbd=2c+�) preprocessing time, and in theworst case O(nbd=2c+�) storage. The resulting querytime is O(A+logn), where A is the size of the answerto the query. These resource bounds apply for any�xed � > 0, and the constant factors in the boundsdepend on d and �. Another algorithm requires O(n)storage, O(n logn) expected preprocessing time, andallows queries to be answered in O(A+n1+�� ) time,where  = 1=(1 + (d � 1)bd=2c). The algorithm is avariant of Haussler and Welzl's [28]. Their query timeis O(n1+��0), where 0 = 1=(1 + d(d� 1)). (This isindependent of the answer size, however.)These results do not improve the algorithm of [7]for halfplane queries; that algorithm requires O(n)storage, O(n logn) preprocessing, and O(A + logn)query time. See also [43, 9] for recent related results.1.2 Outline of the paperThe remainder of this section gives an informal dis-cussion of the ideas in this paper. The next sectiongives a description of the formal framework used inthe theorems, and the main lemma for the rest ofthe paper. This lemma is then applied in x3 to give ageneral theorem that implies the asymptotically tightbound for (�k)-sets. We also prove a general theorem

for probabilistic divide-and-conquer in x3, and a gen-eral result on randomized incremental construction ofgeometric structures. In x4 we apply these results totrapezoidal diagrams, convex hulls, spherical inter-sections and diameter, and halfspace range queries.The �nal section gives some concluding remarks.1.3 The ideasThis section gives a low-rigor general discussion ofthe ideas in this paper. These ideas begin with someobservations about random samples of point sets, andthe information that we can get from such samples.Random samples. Suppose S is a set of pointsin the plane. Suppose R � S of size r is chosen atrandom, with all subsets of size r equally likely. Lete be an edge of the convex hull of R, and let l be thestraight line containing e. The points in the halfplanebounded by l, and not containingR, will be said to bebeyond the edge e. Then with probability 1�1=n
(1),for every edge e of the convex hull of R, the numberof points of S that are beyond e is O(log r)n=r. Thatis, with high probability the convex hull of a randomsubset splits a point set in small pieces. Intuitively,the fact that an edge e has no points of the randomsample R beyond it is good evidence that e has fewpoints of S beyond it. This kind of tail estimate hasbeen the basis of several previous applications of ran-dom sampling to computational geometry [12, 28].In addition to the tail estimate, another fact holdsfor R and S: let Se be the set of points in S that arebeyond e, and let Z be the set of edges of the convexhull of R. Then the expected value of the Pe2Z jSejis O(n). In contrast, the tail estimate says only thatPe2Z jSej is O(n log r). (This is with high probabil-ity, though.) This observation is a key new idea inthis paper. Moreover,Pe2Z jSej behaves roughly as asum of Poisson random variables, so that Pe2Z jSejcis (n=r)cO(r).Why is this kind of bound useful in computing con-vex hulls? One approach is to take a large randomsubset R � S, recursively compute the convex hullof R, and then determine the result of adding the re-maining points S nR. Roughly speaking, the changesowing to the remaining points can be expected to be\local," and require a small amount of work per point.Indeed, for a given point p 2 S n R, the number ofsuch changes is proportional to the number of edgesof the hull of R that p is beyond. The total of thesechanges is therefore expected O(n), as in the abovediscussion.Instead of algorithms for convex hulls of point sets,we will describe algorithms for determining the inter-section of a set of halfspaces. This problem is linear-Clarkson/Shor RS2 February 15, 1995 Page 3
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intersecting at the same point, an input set of pointsin Ed has no d + 1 coplanar, and so on. This is nogreat loss of generality, as usually small tie-breakingperturbations can be appropriately applied, and theanswer sizes A as de�ned are unchanged. Recentlysystematic methods have been developed to applysuch perturbations \formally," that is, to break tiesin an arbitrary but consistent way, so as to simulatenondegeneracy with degenerate input [22, 44].1.1 Problems, results, and relatedworkThis paper is a combination of the two papers[14]and [16], with a sharper proof of the main divide-and-conquer theorem (here Theorem 3.6). The results canbe viewed as an improvement to those of [12], and thisfact suggested the title of this paper. The results inthis paper have been used in an algorithm for trian-gulating simple polygons[17], for small-dimensionallinear and integer programming[13], for an optimalparallel algorithm for Voronoi diagrams[39], and invarious combinatorial results on arrangements[15].Algorithms for trapezoidal diagrams andline segment intersections. For S a set of n linesegments in the plane, what are the pairs of inter-secting segments of S? This computational problemhas received much attention, culminating in the re-cent algorithm of Chazelle and Edelsbrunner requir-ing O(A + n logn) time in the worst case to reportthe A intersecting pairs [5]. Their algorithm requires(moderately) sophisticated data structures and manysophisticated algorithmic techniques, and 
(n + A)space. This paper gives three Las Vegas algorithmsfor this problem. Two of the algorithms incremen-tally build the trapezoidal diagram of S (de�ned be-low), adding line segments in random order. As abyproduct, the intersecting pairs of S are found. Thealgorithms require O(A+ n logn) expected time; onerequires expected O(A+n logn) space, and the otherrequires O(n + A) space in the worst case. Mulmu-ley [35] has independently found a similar algorithm,with the same time bound and O(n + A) worst-casespace bound. Another algorithm given here buildson these algorithms, and requires the same time butO(n) space in the worst case. Reif and Sen [38] ap-plied randomization to obtain parallel algorithms forrelated problems.The trapezoidal diagram (or \vertical visibilitymap"), denoted T (S), is de�ned as follows: for ev-ery point p that is either an endpoint of a segment inS, or an intersection point of two segments in S, ex-tend a vertical segment from p to the �rst segment ofS above p, and to the �rst segment of S below p. If no

such segment is \visible" to p above it, then extend avertical ray above p, and similarly below. The result-ing vertical segments, together with the segments inS, form a subdivision of the plane into simple regionsthat are generally trapezoids. We call this subdivisionthe trapezoidal diagram. (We will call these regionstrapezoids even though some are only degeneratelyso, and we may also call them cells.)Convex hulls. We give a Las Vegas algorithmfor computing the convex hull of n points in E3.The algorithm requires O(n logA) expected time forany set of points in E3, where A is the number ofpoints of S on the surface of the hull. Kirkpatrickand Seidel obtained a deterministic algorithm for pla-nar convex hulls with the same time bound [31]. Wealso give a Las Vegas incremental algorithm requiringO(n logn) expected time for d = 3 and O(nbd=2c) ex-pected time for d > 3. This improves known resultsfor odd dimensions [36, 40, 41, 20]. For independentlyidentically distributed points, the algorithm requiresO(n)P1�r�n f(r)=r2 expected time, where f(r) isthe expected size of the convex hull of r such points.(Here f(r) must be nondecreasing.) The algorithm isnot complicated.Spherical intersections and diametral pairs.We give a Las Vegas algorithm for determining theintersection of a set of unit balls in E3, the prob-lem of spherical intersection. This problem arises inthe computation of the diameter of a point set inE3. For a set S of n points, the diameter of S isthe greatest distance between two points in S. Wegive a randomized reduction from the diameter prob-lem to the spherical intersection problem, resultingin a Las Vegas algorithm for the diameter requiringO(n logn) expected time. The best algorithms pre-viously known for this problem have worst-case timebounds no better than O(npn logn)[2].Tight bounds for (�k)-sets. Let S � Ed containn points. A set S0 � S with jS0j = j is a j-set of S ifthere is a hyperplane that separates S0 from the restof S. A j-set is a (�k)-set if j � k. Let gk(S) be thenumber of (�k)-sets, and let gk;d(n) be the maximumvalue of gk(S) over all n-point sets S � Ed.This paper shows thatgk;d(n) = �(nbd=2ckdd=2e);as n=k!1, for �xed d. The proof technique for thecombinatorial bound can also be applied to give (�k)-set bounds for independently identically distributedpoints. For example, if the convex hull of such a setof points has f(n) expected facets, then the expectednumber of (�k)-sets is O(kdf(n=k)). The proof tech-nique employed for the improved bounds is an in-stance of a \probabilistic method" [24]. The (�k)-setClarkson/Shor RS2 February 15, 1995 Page 2
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Applications of Random Sampling in Computational Geometry, IIKenneth L. Clarkson and Peter W. ShorAT&T Bell LaboratoriesMurray Hill, New Jersey 07974AbstractWe use random sampling for several new geometricalgorithms. The algorithms are \Las Vegas," andtheir expected bounds are with respect to the randombehavior of the algorithms. These algorithms followfrom new general results giving sharp bounds for theuse of random subsets in geometric algorithms. Thesebounds show that random subsets can be used opti-mally for divide-and-conquer, and also give boundsfor a simple, general technique for building geometricstructures incrementally. One new algorithm reportsall the intersecting pairs of a set of line segmentsin the plane, and requires O(A + n logn) expectedtime, where A is the number of intersecting pairs re-ported. The algorithm requires O(n) space in theworst case. Another algorithm computes the convexhull of n points in Ed in O(n logn) expected timefor d = 3, and O(nbd=2c) expected time for d > 3.The algorithm also gives fast expected times for ran-dom input points. Another algorithm computes thediameter of a set of n points in E3 in O(n logn) ex-pected time, and on the way computes the intersec-tion of n unit balls in E3. We show that O(n logA)expected time su�ces to compute the convex hull ofn points in E3, where A is the number of input pointson the surface of the hull. Algorithms for halfspacerange reporting are also given. In addition, we giveasymptotically tight bounds for (�k)-sets, which arecertain halfspace partitions of point sets, and give asimple proof of Lee's bounds for high order Voronoidiagrams.1 IntroductionIn recent years, random sampling has seen increasinguse in discrete and computational geometry, with ap-plications in proximity problems, point location, andrange queries [11, 12, 28]. These applications havelargely used random sampling for divide-and-conquer,

to split problems into subproblems each guaranteedto be small. In this paper, we use random samplingin a similar way, with the additional observation thatthe total of the sizes of the subproblems is smallon the average. This fact gives improved resourcebounds for a variety of randomized algorithms.A key application of this sharper average-casebound is a general result implying that a simple,general technique for computing geometric structuresyields asymptotically optimal algorithms for severalfundamental problems. This method is a smallchange to one of the simplest ways of building a ge-ometric structure, the incremental approach: for ex-ample, for determining the intersection of a set ofhalfspaces, this approach adds the halfspaces one byone and maintains the resulting intersections.Such an incremental approach gives an opti-mal algorithm for constructing an arrangement ofhyperplanes[23]. In general, we have a set of objects,not necessarily halfspaces or hyperplanes, that deter-mine a structure, and we add the objects one by one,maintaining the resulting structure. One variant ofthis incremental approach, a simple way to random-ize the process, is to add the objects in random order.Chew[10] used this approach for building Voronoi di-agrams of the vertices of convex polygons. In thispaper, we prove a general theorem regarding a ver-sion of this randomized and incremental technique.We should note that although our technique is incre-mental, it is not on-line, as some simple informationis maintained for the objects that are not yet added.Some general terminology and assumptions: in thispaper, the dimension d is generally considered to be�xed. The expected resource bounds shown are \LasVegas," and the expectations are with respect to therandom behavior of the algorithms, unless otherwiseindicated. The parameter A is generally used to de-note the size of the Answer to a computation. Theinputs to the algorithms will be assumed nondegen-erate, so an input set of line segments has no threeClarkson/Shor RS2 February 15, 1995 Page 1


